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Abstract

Purpose – This study seeks to focus on the annular flow between rectangular and
equilateral-triangular ducts under all possible arrangements. The aim of this work is to obtain
accurate prediction of the friction factor of this flow using high-order finite element method.

Design/methodology/approach – Steady and fully developed laminar flow of incompressible
Newtonian fluid in an annulus of variable cross-sectional geometry is investigated numerically. Accurate
prediction of the friction factor of this flow was obtained using high-order finite element method.

Findings – The results were in agreement with already published findings in the literature. It was found
that a higher annular area ratio will lead to a monotonic increase in fRe value in the case of regular annuli,
and will lead to an increase followed by a decrease in fRe value in the case of irregular annuli. Also, it was,
found that irregular annuli have lower fRe value than regular annuli, and that the square-in-triangle case
has the lowest fRe value, whereas the square-in-square case has the highest fRe value.

Originality/value – Accurate prediction of the friction factor of the laminar flow in irregular annuli
was obtained. Also, the obtained results can be utilized to optimize the annular geometries under
consideration. In addition, the obtained results can lead to the design of more efficient heat exchangers.
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Nomenclature
A ¼ cross-sectional area of flow
a ¼ dimensional side-length of

internal duct
b ¼ dimensional side-length of

external duct
AR ¼ area ratio (inner duct to outer

duct area ratio)
¼ ða=bÞ2 £ 100 percent (SS-case)
¼ ð

ffiffiffi
3

p
=4Þða=bÞ2 £ 100 percent

(ST-case)
¼ ð4=

ffiffiffi
3

p
Þða=bÞ2 £ 100 percent

(TS-case)
¼ ða=bÞ2 £ 100 percent (TT-case)

Dh ¼ hydraulic diameter, m
¼ (b 2 a) (SS-case)
¼ ð4b 2 2

ffiffiffi
3

p
a 2Þ=ð4bþ 3aÞ

(ST-case)
¼ ð

ffiffiffi
3

p
b 2 2 4a 2Þ=ð3bþ 4aÞ

(TS-case)
¼ ðb2 aÞ=

ffiffiffi
3

p
(TT-case)

f ¼ Fanning friction factor
m ¼ degree of the interpolating

polynomial
N ¼ non-dimensional inward drawn

normal
n ¼ inward drawn normal
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P ¼ non-dimensional pressure
p ¼ pressure, Pa
Re ¼ Reynolds number
(U, V, W) ¼ dimensionless velocities
(u, v, w) ¼ velocity components in x, y and z

directions, respectively, m/s
W ¼ non-dimensional average

velocity
�w ¼ average velocity of fluid, m/s

(X, Y, Z ) ¼ non-dimensional Cartesian
coordinates

(x, y, z) ¼ Cartesian coordinates, m

Greek symbols
r ¼ density of fluid, kg/m3

m ¼ dynamic viscosity of fluid,
kg/(m s)

n ¼ kinematic viscosity of fluid, m2/s

Introduction
The flow in annuli of regular and irregular cross-sectional geometries is used in a wide
range of industrial applications including, but not limited to, chemical, petroleum,
pharmaceutical, food, and plastic industries. Therefore, it is practically important to be
able to predict the pressure drop characteristics of the flow in a variety of annular
geometries. In the past, diverse approximate techniques have been used to address this
problem and to obtain the friction factor of the flow in various ducts and annular
shapes. It should be emphasized here that if highly accurate results of friction factor
are required, the commonly used approximate method, which uses the results of
friction factor of regular annuli for irregular annuli of the same hydraulic diameter, is
not sufficiently accurate for research and/or design purposes. Rather, one should
re-solve the complete set of governing equations of the flow for that particular
configuration under study.

The published research in this field can be divided into three categories:

(1) The flow in a single duct (e.g. cylinder, square, triangular duct, etc.).

(2) The flow in regular annuli (e.g. cylinder-in-cylinder, square-in-square ducts,
etc.).

(3) The flow in irregular annuli (cylinder-in-square, square-in-cylinder ducts, etc.).

Within the first category, the fully developed laminar flow in a single duct of variable
geometrical shapes has been considered by many researchers during the 1960s, 1970s
and early 1980s. For a comprehensive review, one may refer to the reference book edited
by Kakac et al. (1987). Furthermore, Nonino et al. (1988) solved the full Navier-Stokes
equations for laminar three-dimensional parabolic flow in square ducts using the finite
element method. Hydrodynamically developing flows in square ducts were presented.
Their solutions were based on the parabolized simplification of the Navier-Stokes
equations. New results were presented for developing flows in square ducts. Asaba et al.
(1991) studied numerically the laminar flow in irregular domains. An algebraic
coordinate transformation was developed to map the irregular domain onto a circle.
Their results were comparable to existing and published data in the literature. Uzun and
Unsal (1997) studied numerically the hydrodynamically fully developed laminar flow
inside ducts of irregular cross-sections (e.g. triangular, sinusoidal, square ducts with
truncated four corners, four cusped ducts and rhombic ducts). The elliptic grid
generation technique was used to transform partial differential equations of arbitrary
and irregular physical plane into a square shaped computational domain.

Among the researchers of the second category, Kuehn and Goldstein (1976)
comprehensively studied the laminar flow in the annular region between horizontal
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concentric cylinders using experimental and theoretical approaches. The experimental
and numerical studies of the eccentric case have been carried out by Kuehn and Goldstein
(1978) and more recently by Guj and Stella (1995). El-Shaarawi and Alkam (1992) have
solved the unsteady boundary layer equations using the finite difference technique to
obtain the velocity profiles in the entrance region of a circular concentric annulus.

Comparatively, little work has been conducted in more complex flow domains, such
as the irregular annuli considered in this study. Ratkowsky and Epstein (1968) applied
the method of least square fitting of harmonic functions to known boundary conditions
in order to obtain closed-form solutions for laminar flow of an incompressible fluid
through the constant area annulus between a regular polygonal duct and a centered
circular core. The product of Fanning friction factor and Reynolds number (i.e. fRe)
was determined for the extreme cases of either no core or core touched the outer walls.
Also the effect of polygonal corner angles on the numerical results was studied.
Specifically, the following cases were under investigation: flow in triangular,
octagonal, hexagonal and squared ducts all centered by circular cores. The above
study by Ratkowsky and Epstein has actually motivated the present study.

It can be noticed that most researchers have focused their work on single tube of a
particular cross-sectional geometry, and very few have addressed the irregular annuli.
In this study, the different combinations of square and equilateral-triangular ducts will
be considered, namely square duct in triangular duct, triangular duct in square duct,
square duct in square duct and triangular duct in triangular duct. These cases will be
studied for the full range of area ratio (AR) from zero (when there is no inner core) to the
maximum possible value (when the inner duct touches the walls of the outer duct).

Obtaining highly accurate values of the friction factor for the fully developed
laminar flow in irregular annuli was critical to our study. This was achieved by solving
the appropriate governing equations and associated boundary conditions numerically
using the finite element method. Our results should be utilized to optimize the annular
geometries under consideration.

Mathematical formulation
Figure 1 shows a schematic diagram of the flow problem at hand. The flow is
considered fully developed in the axial (z) direction. In this case, the laminar, viscous
and incompressible flow of a constant property Newtonian fluid is governed by the
following axial momentum equation:

2
1

r

dp

dz
þ n

›2w

›x 2
þ

›2w

›y 2

� �
¼ 0 ð1Þ

where w is the velocity component in the axial direction. The appropriate boundary
conditions associated with the above governing equation are:

w ¼ 0 at the walls
›w

›n
¼ 0 at the lineðsÞ of symmetry ð2Þ

where n is the inward-drawn normal.
For convenience in the subsequent analysis, equation (1) with its associated

boundary conditions will be converted into non-dimensional form by introducing the
following dimensionless variables:

Numerical
calculation of
laminar flow

295



X ¼
x

Dh
; Y ¼

y

Dh
; W ¼

w

21
r

dp
dz

� �
D2

h=n
� � ð3Þ

Thus, the governing equation in non-dimensional form becomes:

›2W

›X 2
þ

›2W

›Y 2

� �
þ 1 ¼ 0 ð4Þ

and is subjected to the following boundary conditions:

W ¼ 0 at the walls
›W

›N
¼ 0 at the lineðsÞ of symmetry ð5Þ

The quantity of primary interest in the current study is the peripherally averaged
Fanning friction factor of the irregular flow geometries at hand. This can be
determined once the velocity field has been computed. The usual definition for this
quantity is:

f ¼
�tw

1=2ðrW
2
Þ

ð6Þ

where �tw is the peripherally averaged wall shear stress. The product of the friction
factor-Reynolds number ( fRe) is expressed by considering the averaged velocity
gradients on the duct walls:

Figure 1.
Schematic diagram of the
physical problem:
(a) SS-case, (b) ST-case,
(c) TS-case, (d) TT-case
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fRe ¼
22

W

›W

›N

� �
w

ð7Þ

where f is the Fanning friction factor andRe is the Reynolds number, which is defined as:

Re ¼
rWDh

m
ð8Þ

and the average velocity is defined as:

W ¼
1

A
A

ðð
W ðX ;Y ÞdX dY ð9Þ

Numerical method of solution
The above set of governing partial differential equation and boundary conditions has
been solved using the finite element technique. The domain of interest is divided into
triangular elements of quadratic and cubic type, i.e. the degree of polynomial used to
approximate the unknown field variables within each triangular element can be 2 or 3.
The governing partial differential equation and boundary conditions are discretized
through the well known Galerkin’s formulation (Fletcher, 1984), and the resulting set of
algebraic equations is solved iteratively by means of the Gauss-Seidel method. The
details of the finite element method based on the Galerkin’s formulation are available in
many standard text books (Reddy, 1993). Solutions were assumed to converge when
the following convergence criterion is satisfied by every dependent variable at every
grid point in the computational domain:

Fnew 2Fold

Fnew

�����
����� # 1024 ð10Þ

where F could be any dependent variable.
Once the solution for dimensionless axial velocity field W(X, Y) in a fixed flow

geometry was obtained, the integral in equation (9) was calculated numerically, and
subsequently the values of fRe were calculated using equation (7).

Results and discussion
Our study focuses on the friction factor of laminar flow in irregular annuli. For all cases
considered, the flow cross-sectional area was modified by changing the annulus AR.
The product of friction factor and Reynolds number ( fRe) was tabulated and, based on
these tables, optimum flow geometry was reached.

Grid sensitivity
Several numerical tests were carried out in order to verify the performance of the
solution procedure. Laminar fluid flow in a single square duct was considered because
the exact analytical expression of the friction factor-Reynolds number ( fRe) product
was available in the literature (Shah and Bhatti, 1987). For this flow problem, the exact
value is fRe ¼ 14.227077.
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The numerical tests were performed using two different types of elements:
quadratic (m ¼ 2) and cubic (m ¼ 3) triangular elements. The results were verified
using a mesh refinement approach, i.e. computations were performed for several
successively refined uniform meshes. The fRe values obtained for the different meshes
used in our computation are shown in Table I. Here, it should be emphasized that the
accuracy of the solution was improved by using higher-order elements. When
compared with the above exact value, our results show an excellent agreement. This
agreement has strengthened our confidence in the results and enabled us to move
forward to the case of irregular annuli. The aforementioned mesh refinement approach
was repeated for all cases considered, and the majority of the calculations presented
here were made using third-order triangular elements. The total number of elements
and nodes used were 508 and 1,077, respectively.

Irregular annuli
There were four cases considered in our study, namely: the square-in-square (SS-case),
triangle-in-square (ST-case), square-in-triangle (TS-case), and triangle-in-triangle
(TT-case). The triangle used in our study was equilateral. The numerical
calculations were carried out for multiple annulus ARs.

Velocity contours
To study the effect of AR on the hydrodynamics of the flow in a given annular region,
different values of the AR were considered for each case studied. Owing to geometric
limitations (e.g. the walls of the inner duct cannot cross the walls of the outer duct), the
values of the AR were not the same for all cases.

The following values of AR were tested for the SS-case: AR ¼ 0, 10, 20, . . . , 100
percent. For the case when AR ¼ 0 (single square duct), the velocity was minimum at
the walls and maximum at the center of the square, as expected. This case was used to
validate our results.

Since the velocity contours for the different ARs were similar, and in order to save
space, a sample velocity contour plot at AR ¼ 20 percent will be shown for each
annular geometry considered. The velocity contours of the SS-case are shown in
Figure 2. By inspecting the figure, one can notice that the maximum velocity in the
annular region occurs at 458 angle (measured from the horizontal axis with the origin

m
Number of
elements

Number of
nodes fRe m

Number of
elements

Number of
nodes fRe

2 4 13 14.45814 2 764 1,591 14.22708
2 8 25 14.29393 2 900 1,875 14.22708
2 24 61 14.23519 3 4 21 14.35003
2 38 93 14.22950 3 16 72 14.23024
2 102 229 14.22743 3 34 138 14.22812
2 152 335 14.22726 3 120 460 14.22713
2 198 431 14.22717 3 202 756 14.22710
2 258 551 14.22713 3 330 1,228 14.22709
2 444 941 14.22710 3 338 1,434 14.22708
2 486 1,033 14.22709 3 402 1,483 14.22708
2 742 1,551 14.22708 3 432 1,591 14.22708

Table I.
Calculated values of fRe
for the test case of a
square duct
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being at the geometric center of the squares). This is due to the fact that, at this angle,
the space between the inner and outer walls of the annulus is at its maximum.
Furthermore, the location of the maximum velocity lies not in the middle between the
inner and outer walls but rather is closer to the inner wall.

The contour plot shown in Figure 2 was obtained again for the TS-case, and the
result is shown in Figure 3. In this figure, it can be noted that the maximum velocity in
the annular region occurs at 908 angle (measured from the horizontal) and is closer to
the inner wall. This is fundamentally similar to the case shown in Figure 2, the reason
being, the maximum velocity is expected to be located at an angle where, in general, the
spacing between the inner and outer walls of the annulus is at its maximum.

The corresponding results were obtained for the rest of the cases considered. These
are shown in Figure 4 for the case of ST-case, and in Figure 5 for the case of TT-case.
The general trend discussed in Figures 2 and 3 above was also noted in these two
cases, thus the discussion for these two cases will not be repeated here for clarity.

Effect of the annulus AR
Based on the above results for the velocity contours, the product of friction factor and
Reynolds number ( fRe) was calculated for all annular geometries considered in our
study. The results are summarized in Table II. When these results are read carefully,
one can make the following observations:

. For all cases studied. When AR ¼ 0 (i.e. flow in single duct), the present study
accurately predicts fRe value. This accuracy can be verified by comparing our
results with the corresponding results in the literature (Ratkowsky and Epstein,
1968) which is shown in Table II.

Figure 2.
SS-case: axial-velocity

contours, AR ¼ 20 percent
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. For regular annuli (SS-case and TT-case). Any increase in AR will lead to a
monotonic increase in fRe value. This trend was identical with that obtained by
Ratkowsky and Epstein (1968) for the cylinder-in-cylinder regular annulus case.

. For irregular annuli (ST-case and TS-case). An increase in AR will lead to an
initial increase followed by a decrease in fRe value. AR ¼ 10 is a critical value in
Table II at which point fRe is maximum for both ST-case and TS-case. This
trend was also noted by Ratkowsky and Epstein (1968) for their irregular annuli.

. For regular annuli.When AR value is very large, the fRe value becomes insensitive
to further increase in AR value. For example, fRe value becomes invariant when
AR $ 90 percent for the SS-case, and when AR $ 80 percent for the TT-case.

. For regular annuli. As AR increases, fRe asymptotes to the same value. The
asymptotic value in Table II is fRe ¼ 24.00000 for both SS-case and TT-case.
Ratkowsky and Epstein (1968) have obtained this same value in their study
(Figure 2) for the cylinder-in-cylinder regular annulus case. This lead us to
conclude that regardless of the particular shape used to generate a regular
annulus (e.g. cylinder-in-cylinder or square-in-square or triangle-in-triangle, etc.),
the asymptotic value of fRe will always be the same for all cases as AR
approaches 100 percent.

. For irregular annuli. As AR value approaches extreme limits, i.e. when the wall
of the inner duct becomes in contact with the wall of the outer duct, the fRe value
of the TS-case asymptotes to a smaller value than that of the ST-case.

. When AR is constant. We can rank the geometric cases studied from smallest fRe
value to largest in the following order: first TS-case then TT-case then ST-case
then SS-case provided that AR ¼ 10. When AR . 10, the order becomes:
TS-case then ST-case then TT-case and last SS-case.

Figure 3.
ST-case: axial-velocity
contours, AR ¼ 20 percent
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Conclusions
The fully developed laminar flow of an incompressible Newtonian fluid in different
irregular annuli was investigated by using the finite element technique. The annular
configurations studied were made up of equilateral-triangular ducts and square ducts
under all possible arrangements. Conclusions drawn from this study can be
summarized by the following points:

Figure 4.
TS-case: axial-velocity

contours, AR ¼ 20 percent

Figure 5.
TT-case: axial-velocity

contours, AR ¼ 20 percent
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. For regular annuli. An increase in AR leads to asymptotic increase in the fRe
value. The asymptotic value is independent on the shape of the annulus.

. For irregular annuli. An increase in AR will lead to an initial increase followed by
a decrease in fRe value. AR ¼ 10 was a critical value.

. For regular annuli. fRe value becomes insensitive to AR when AR approaches
100 percent.

. From a hydrodynamic point of view, the annular geometries studied can be
ranked from best (i.e. lowest friction) to worst (i.e. largest friction) case as follows:
TS-case, ST-case, TT-case and SS-case, respectively. One exception to this
conclusion is when the AR is small, i.e. AR ¼ 10, the order in this case becomes:
TS-case, TT-case, ST-case and SS-case.

. For all cases studied. We found that the TS-case has the lowest friction loss
whereas the SS-case has the highest friction loss (i.e. fRe value).

fRe AR percent Case

14.22747 (14.23)a 0
21.57767 10
22.19143 20
22.60156 30
22.92255 40 SS-case
23.17198 50
23.39839 60
23.59690 70
23.78603 80
24.00000 90-100
14.22747 (14.23)a 0
21.28095 10
20.19225 20 ST-case
17.74084 30
17.15367 32
13.33346 (13.33)a 0
19.70767 10
18.77559 20 TS-case
16.74992 30
13.89206 40
13.57214 41
13.3336 (13.33)a 0
20.55956 10
21.43128 20
22.00568 30
22.50544 40 TT-case
22.86745 50
23.23222 60
23.55582 70
24.00000 80-100

Source: aRatkowsky and Epstein (1968)
Table II.
Effect of AR on fRe
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. In general, the results suggest the use of irregular annuli (triangular and square
duct combinations) rather than the regular annuli (square-in-square and
triangle-in-triangle duct combinations). Although irregular annuli are
uncommonly used in industry at the present time, our study suggests that any
improvement in the future on the pressure drop in double pipe flow devices must
consider the use of dissimilar inner and outer duct shapes.
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